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Modified Bead-Spring Theory of Polymer Solutions. 
IV. Extension to Polymer Melts 

A. E. EVERAGE, JR.,* and R. J. GORDON, Department of Chemical 
Engineering, University of Florida, Gainesuille, Florida 3261 1 

Synopsis 

A constitutive equation which has proven quite successful in describing the nonlinear viscoelastic 
behavior of dilute polymer solutions is extended to the case of molten polymers. The techniques 
utilized are similar to those discussed by Ferry in a similar adaptation of the Rouse-Zimm Theory. 
The resulting model is found to quantitatively portray the shear rate dependence of the non-New- 
tonian viscosity and primary normal stress functions and the frequency dependence of the storage 
and loss moduli. Extensional flow data reported by Spearot and Metzner for two polyethylenes 
are well described, using parameters calculated from steady shearing measurements. Of major 
significance is the ability of the model to account for influences of molecular weight, molecular weight 
distribution, and temperature. 

INTRODUCTION 

One of the major goals of current rheological research is to relate viscoelastic 
properties of polymeric materials to measurable molecular parameters. Con- 
siderable progress toward this end has been made in the case of dilute polymer 
solutions through the development of idealized mechanical models of isolated 
macromolecules.14 These models generally give reasonable predictions, how- 
ever, only in the limit of small strains or deformation rates. Attempts to gen- 
eralize the models have frequently led to many conceptual as well as mathe- 
matical difficulties. There has also been a large effort to modify these dilute 
solution theories to apply to molten p0lymers,4,~ since in many ways the molten 
state more closely approximates the conditions assumed in the dilute solution 
theories. 

In this work, we extend a recently developed theory of dilute polymer solutions 
to molten polymers by utilizing certain reasonable empiricisms adopted in similar 
efforts with other molecular theories, such as the Rouse-Zimm theory. The 
advantage of the present formulation is the success of the dilute solution theory 
in accurately describing a variety of nonlinear phenomena,  such as a non- 
Newtonian viscosity, without additional empiricisms or modifications, in marked 
contrast to most other available dilute solution molecular theories (the rigid 
dumbbell model is a notable exception). 
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CONSTITUTIVE EQUATION 

In a recent series of publications, we have developed an explicit constitutive 
equation for dilute polymer solutions which accounts for the influences of solvent 
power, molecular weight, and molecular weight distribution.610 The constitutive 
equation was derived by combining an expression for the motion of the end- 
to-end vector of a macromolecule, as given by Ericksen’s anisotropic fluid 
theory,l with the diffusion equation for the simple “dumbbell” molecular 
model.3 Thus, the formulation represents a combination of continuum me- 
chanics and molecular theory. Later developments included introduction of 
multiple relaxation timeslo and extension to polydisperse systems.8J0 For the 
monodisperse case, our model takes the formlo 

where S is the total stress, 0, is the j th  relaxation time, N A  is Avogadro’s number, 
C is the polymer concentration, k is Boltzmann’s constant, T is the temperature, 
V is the velocity, D is the rate of strain tensor M(VV + VVT), p is an isotropic 
pressure, qs is the solvent viscosity, and E is a constant which arises in Ericksen’s 
theory” and is subject to the restriction 

0 I € < 1.0 (4) 

In the original development of the model, the theoretical expression for 19, was 
identical to the corresponding result in the Rouse-Zimm theory1,2 and thus in- 
volved an unknown parameter h ,  which measured the strength of bead-bead 
hydrodynamic interaction. We have found, however, that the following semi- 
empirical relation originally proposed by Bird and Carreau,12 

in which a is an unknown constant and 61 is the primary relaxation time, yields 
predictions similar to those of the classical hydrodynamic interaction formula- 
tion, but in addition provides a significant reduction in computational complexity 
in the application of the model. From eqs. (1)-(3) and (5), we may readily obtain 
the following convenient expression for the primary relaxation time 81, in terms 
of the zero-shear viscosity 710: 

where Z(a)  is the Riemann zeta function,13 defined by 
m 1  
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The predictions of eqs. (1)-(5) are indistinguishable from those of the 
Rouse-Zimm theory for small-amplitude oscillatory shearing, where the latter 
model is known to be highly satisfactory, but provide a significant improvement 
in the case of steady shearing flow. For this case, our formulation yields realistic 
non-Newtonian viscosity and primary normal stress functions, as well as a 
nonzero and negatiue secondary normal stress function.1° The Rouse-Zimm 
theory predicts a constant viscosity, a quadratic dependence of N1 on shear rate, 
and a zero Nz. The first two of these predictions are known to hold only at  
vanishing small shear rates! and current data on the second normal stress dif- 
ference in dilute polymer solutions consistently show it to be negative and 10-50?? 
of N1 in magnitude.14-18 

It is interesting to note that eqs. (1)-(3) are very similar to the well-known 
four-constant Spriggs m0de1.l~ (The Spriggs time derivative has one additional 
isotropic term, '$$(1 - t)(~:D)8; otherwise, the models are identical.) This latter 
constitutive equation was obtained by extending the generalized Maxwell model 
of linear viscoelasticity through substitution of a properly invariant time de- 
rivative. The selection of the time derivative was made on an empirical basis, 
since a large number of properly invariant derivatives exist. In the Spriggs 
formulation, the coefficient of D on the right-hand side of eq. (1) is treated as 
an unspecified constant, related to the j t h  relaxation time Oj by 

where 70 is the zero-shear viscosity. Thus, the Spriggs model does not explicitly 
account for polymer concentration, molecular weight, or temperature. 

EXTENSION TO MELTS 

Following Ferry's adaptation of the Rouse theory to polymer melts, we in- 
troduce the following modifications to our dilute solution model: (i) vS is elim- 
inated in eq. (3), and (ii) C is replaced by p, the melt density. The primary re- 
laxation time is then given by 

vdM 1 
$1 = 

N ~ p k T ( 1  - t)2" (Z (a )  - 1) 
(7) 

Early in our analysis of experimental results on high molecular weight melts, 
we found that the value of $1 required to best fi t  the experimental data was 
usually significantly higher than that calculated on the basis of eq. (7). This 
suggested that the "effective molecular weight," ME, was actually greater than 
the true molecular weight M. Denoting the ratio of these two quantities by KE, 
eq. (7) may be written 

This empiricism has some precedent in the literature, being utilized in a previous 
study in which the Rouse-Zimm theory was compared with concentrated polymer 
solution data.20,21 

To extend the model to polydisperse melts, we assume the monodisperse 
equations to be applicable to each molecular weight fraction, the total polymer 
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contribution to the stress being obtained from a summation over all fractions. 
In this case, the model takes the form 

S = - p 6  + rf (11) 
i j  

where i refers to a particular molecular weight fraction and KE is assumed to be 
identical for each fraction. 

The Rouse theory, extended to entangled melts, yields the result that the ith 
principal relaxation time is proportional to the square of the molecular weight 
Mi and the friction coefficient C4 

8; - M? {E (12) 

where {E is the “effective friction coefficient,” the same for all molecular weights. 
From eqs. (9)-(12), {E may be eliminated in terms of the zero shear viscosity. 
We find 

where the weight-average relaxation time Ow is given by 

V d ( E M W  

pRT(1-  E )  2“[Z(a) - 11 
ow = 

To describe the molecular weight distribution, the Schulz-Zimm distribution 
is ~ t i l i z e d : ~ ~ * ~ ~  

where d n  is the fraction of macromolecules with molecular weight in the range 
M ,  M + dM,  and z is defined by 

z + 2  Mw 
z + l  M ,  

- 

Here z represents a measure of the distribution breadth and varies from -1 
(Mw/Mn = a) to 00 (Mw/M,  = 1.0). The complete polydisperse model is then 
given by eqs. (5) and (9)-(16). For a melt whose molecular weight M ,  and mo- 
lecular weight distribution ( z )  are known, the model contains four constants: 
a ,  E ,  ~ 0 ,  and KE or 0,. These can be readily obtained from steady or oscillatory 
shearing data, as illustrated below. 

MODEL PREDICTIONS AND COMPARISON W-i‘l’H 
EXPERIMENT 

Steady and Oscillatory Shearing Flow 

For steady shearing flow, the velocity field is of the form 

V = ( G x Z , ~ , ~ )  
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Fig. 1. Plot of 7 and N1 vs. G for polyethylene melt PE-l:25 (- - -) model prediction. 

where G is the shear rate. For small-amplitude oscillatory shearing flow, 

V = (Re(Voeiwt),O,O) 

Here, o is the frequency and Vo is a complex amplitude. For monodisperse melts, 
the model yields the following expressions for the non-Newtonian viscosity T ,  
the primary and secondary normal stress differences N1 and N2, the dynamic 
viscosity q', and the dynamic storage modulus G': 

lop, 

10.' lo-' loo I J  
G (set.-') 

Fig. 2. Plot of 7 and N1 vs. G for polyethylene melt PE-2:25 (- - -1 model prediction. 
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Fig. 3. Plot of q,  T', and N1 vs. G' for polyisobutylene:26 (- - -) model prediction. 

where C2 = 4 2  - t). For polydisperse systems, the model predictions are 

N jll 
x c - .  dx (22)  

j = 2  J ~ "  + (2"CBWGx2)2 

dx (24)  
N 1 F2 * j Z n  + ( ~ " C B , G X ~ ) ~  

dx (25) N j "  x c - .  
j = 2  J2" -k ( 2 " 0 , ~ X ~ ) ~  

where x = MIM, and r(z) is the gamma function. 
Equations (17)-(26) indicate the following general features of the constitutive 

model: ( 1 )  The second normal stress difference is predicted to be negative and 
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Fig. 4. Plot of 7,  q', N1, vs. G' for polystyrene:26 (- - -) model prediction. 

smaller in absolute value than N1, in agreement with recent experimental find- 
i n g ~ . ' ~ - ' ~  The ratio of the normal stress differences is given by 

(2) The following well-known analogies between material functions in steady 
and oscillatory shearing flow are predicted: 

v ( G )  = v ' (CG) (28) 
C2 
-Ni (G)  = G'(CG) 
2 

Relations of this type are frequently observed e~perimental ly .~~ (3) In the limit 
of high shear rates or frequencies, the model predicts a constant limiting slope 
for all material functions. For example, a plot of log v versus log G attains 
a constant slope S in the high shear rate region given by 

1- a s, = - 
a 

The corresponding slope for log N1 versus log G is 

1 
SN1 = - 

a 

The predictions of eqs. (14)-(23) are compared with experimental results in 
Figures 1-11. In these comparisons, the values of the model parameters have 
been determined using graphic techniques. In most cases, non-Newtonian 
viscosity data are available, and the parameter a is determined through eq. (30) 
from the experimentally observed power law slope. Assuming that z is known 
from measured or estimated values of M ,  and M,, a dimensionless plot of v/vo 
as a function of C0,G is calculated from eq. (22) and superimposed on the ex- 
perimental data by suitable vertical and horizontal shifts. The value of vo is 
obtained from the vertical displacement of the dimensionless plot, and the 
product C0, is obtained from the horizontal shift. Thus, the parameters a and 
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Fig. 5. Plot of 7 , ~ ‘ .  N1, vs. G’ for polyethylene:26 (- - -) model prediction. 
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Fig. 6. Shear stress relaxation following cessation of steady shearing flow. 

70 and the product C8, are obtained from viscosity data (over a suitably wide 
range of shear rate). 

In general, data for any other material function may be used to determine the 
separate values of C (= [ 4 2  - and 8,. If 7’ data are available, the value 
of C may be determined, as suggested by eq. (28), from the horizontal shift re- 
quired to superimpose the 7 and 7’ data. Also, if experimental results for N1 are 
available, a dimensionless plot of C28,N1/q0 as a function of CB,G, calculated 
from eq. (23), may be superimposed on the experimental data to determine the 
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Fig. 8. Shear stress growth at inception of steady shearing flow. 
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Fig. 9. Plot of ;/370 vs. time for various extension rates. 
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Fig. 10. Plot of vs. time for polyethylene PE-l:25 (- - -) model prediction. 
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Fig. 11. Plot of ij vs. time for polyethylene PE-ZZ5 (- - -) model prediction. 

quantity C2B,/qo from the vertical displacement of the plot. This result is then 
combined with the known values of 90 and CB, to separately specify C and 
6,. 

Spearot and M e t ~ n e r ~ ~  have recently published measurements of the non- 
Newtonian viscosity and primary normal stress difference for very broad mo- 
lecular weight distribution polyethylene melts. Measurements of Mu, M,,, and 
other physical properties of these melts are tabulated in Table I, and the ex- 
perimental viscosity and normal stress data are plotted in Figures 1 and 2.  The 
predictions of eqs. (22) and (23) have been compared to these data, with the re- 
sults indicated by the solid lines in the two figures. The model parameters are 
tabulated in Table 11. The predicted results'for the viscosity are quite good in 
both figures, being well within the experimental error. The normal stress pre- 
dictions are also very good over the intermediate range of shear rates. However, 
discrepancies occur a t  low and high shear rates. 

TABLE I 
Physical Properties of Polyethylene Melts2 

Density, 
Polyethylene g/cc at  25°C Melt index M w  X MwIMn 

PE-1 0.92 1.9 3.9 11.5 
PE-2 0.92 1.4 4.25 8.5 

TABLE I1 
Model Parameters for Polyethylene Melts2 

V O Y  

poises si ( t  = a), 
Polyethylene x E a B W ,  sec KE poises x 

PE-1 (T = 150°C) 2.5 0.0765 2.35 9.5 6.05 1.05 (r = 0.1255) 
1.07 (r = 0.0904) 

1.17 (r = 0.0577) 
PE-2 (T = 175°C) 5.0 0.274 2.35 34.3 8.34 1.23 (r = 0.0357) 



BEAD-SPRING THEORY. IV. 1431 

Denson and co-workers26 have recently published measurements of 7, N1, T', 
and G' for a variety of polymer melts. Their results for a low-density, branched 
polyethylene ( M ,  = 1.8 X lo5, Mw/Mn = 6.1), a commercial polystyrene ( M ,  
= 1.8 X lo5, M,/M, = 2.6), and a polyisobutylene ( M ,  = 5.9 X lo4, Mw/M,, = 
3.0) are plotted in Figures 3-5. 

The model parameters have been determined for these data using the graphic 
procedures outlined above. However, for this case, the parameter a was deter- 
mined from the slope of the q' data in the power law region, since this material 
function was measured over a very broad range of frequencies. The model 
predictions are represented by the solid lines in the figures, and the corresponding 
model parameters are tabulated in Table 111. The results indicate an excep- 
tionally good overall fit of the model to these data. In particular, it is interesting 
that the present theory, which is based on a linear polymer model, yields excellent 
results for the branched polyethylene (Fig. 5 ) .  

In summary, the present model appears to predict quite accurately the shear 
rate and frequency dependence of the material functions 7, N1, q', and G' for 
polymer melts. 

Transient Stress Phenomena 

For the case of a polydisperse solution in steady shearing motion which is 
suddenly stopped a t  t = 0, the present model yields the following expressions 
for the shear and normal stress relaxation for t L 0: 

N exp [- tja/2aBwx2] 
;=2 j 2 a  + ( ~ " C B , G X ~ ) ~  

N 1 
;=2 j2" + ( ~ " C B , G X ~ ) ~  

xz+4 exp [-(z + 21x1 c 

x * + ~  exp [-(z + 2 ) x ]  C 

dx 
(33 )  

1= N 

dx 

where S12,o and N1,o are the value of S12 and N1 at t = 0. 
Equations (32)  and (33 )  are plotted in Figures 6 and 7, for various initial shear 

rates. These results have been obtained assuming the typical parameter values 

TABLE I11 
Model Parameters for Experimental Dataa of 

Temperature, q,, o w ,  
Polymer "C poises E 01 sec K E  

Polyisobutylene 25 1.0 x 106 0.3290 3.8 3.34 1.29 
Polystyrene 199 8.7 x 104 0.1310 3.2 0.761 2.54 
Polyethylene 200 7.8 x 104 0.0596 2.8 1.99 7.06 

aMelt densities were not reported; K E  values based on an assumed density of 1.0 
dcc .  
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a = 3, z = 0, Ow = 1.0, and t = 0.22. The results indicate that the predicted re- 
laxation rates increase with initial shear rate for both S1,2 and N1. Furthermore, 
the shear stress relaxes much more quickly, for a given shear rate, than the normal 
stress, Both of these effects are generally observed experimentally for concen- 
trated solutions and melts. 

For the case of stress growth at the inception of steady shearing flow, the melt 
is taken to be at  rest until t = 0, at which time a steady shearing motion is sud- 
denly imposed. For a polydisperase solution, the prediction of the present model 
for the stress growth for t > 0 is given in eq. (34). Here, 5’12,~ and S I ~ , ~  are the 
stress at  time t and the ultimate steady-state stress, respectively. 

Equation (34) is plotted in Figure 8 for the parameter values used in the stress 
relaxation calculation: 

The results indicate that for high shear rates, stress overshoot followed by un- 
dershoot is predicted. With decreasing shear rate, however, the overshoot and 
undershoot ultimately disappear. Both of these effects are observed experi- 
mentally.27-29 

The results in Figures 6-8 are in qualitative agreement with generally accepted 
experimental results. However, the ability of the present model to quantitatively 
describe transient stress phenomena is subject to question at  this time. In a 
recent p u b l i ~ a t i o n , ~ ~  Chen and Bogue have reported extensive experimental 
measurements of time-dependent stresses in polymer melts. These authors have 
also compared the predictions of several constitutive equations to these exper- 
imental data. The results strongly suggest that in order to obtain quantitative 
agreement with experiment for transient stress phenomena, a deformation 
rate-dependent relaxation time is required. As noted by Graessley,3O a defor- 
mation rate-dependent relaxation spectrum in concentrated solutions and melts 
may be attributed to a decrease in entanglement density with increasing shear 
rate (i.e., with fewer entanglement restrictions, the macromolecule may “relax” 
more quickly). Although the present theory accounts for friction effects from 
entanglement constraints in {E,  no attempt has been made to incorporate any 
effects of variations in entanglement density. Therefore, if changes in entan- 
glement density do, in fact, affect the relaxation spectrum, further modification 
of the theory will be required. 

EXTENSIONAL FLOW 

In the previous sections, our theory was evaluated by comparing the predicted 
material behavior with experimental results for shearing motions. Although 
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these comparisons are definitely a valid measure of the accuracy of the theory, 
a much more rigorous test of a constitutive equation lies in its ability to predict 
material response under a variety of kinematic conditions. In particular, the 
prediction of material behavior for a given flow field (e.g., extensional flow), 
utilizing model parameters determined by comparisons with experiment in a 
distinctively different flow (e.g., shearing flow), is a uniquely severe test of the 
validity and internal consistency of a mechanical theory. This is especially true 
for extensional motion in light of the large variations in predicted stress levels 
and material behavior which have been rep0rted.31-~~ 

Under the restriction of constant volume, pure extensional flow is described 
by a velocity field of the form 

where r(t)  is the extension rate, which may be an arbitrary function of time. For 
this flow, the fluid is characterized by an extensional viscosity i, defined by 

where S11 is the axial stress. For the case of zero force acting on the surface of 
the material perpendicular to the direction of extension (i.e., S 2 2  = S33 = O), 
may be expressed in the form 

- S 1 1 - S 2 2 - ~  - 
r r v =  

For the case of a polydisperse melt, subjected to a constant extension rate I? 
and unstressed at t = 0, the present model yields 

N ;a 

where c1 = (1 - ~ ) 2 ~ 8 , r .  
Equation (35) has been plotted in Figure 9 for the parameter values t = 0.2, 

a = 4, z = 0,8, = 3.125 and the indicated values of r. The results indicate a 
limiting value of for very low deformation rates and an exponential increase 
for larger values of r'. These results are qualitatively identical to experimental 
observations reported by M e i ~ s n e r ~ ~  and, more recently, by Everage and Ball- 
man.35 

Quantitative evaluation of our model requires measurements of extensional 
viscosity of materials which have also been characterized in shearing flow. 
Spearot and M e t ~ n e r ~ ~  have reported results of this type for three polyethylene 
melts. Extensional viscosities were obtained from measurements in a fiber 
spinning apparatus, and viscosity and primary normal stress difference mea- 
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surements were independently obtained in steady shearing flow. These data 
were used by Spearot and Metzner to evaluate the predictive ability of five 
constitutive theories: the Bird-Carreau model,12 the Bogue-White a 
modified (nonlinear) Maxwell model, a generalized Maxwell model (i.e., a non- 
linear Maxwell model generalized to include two relaxation times), and the elastic 
dumbbell model,3 which was modified by the inclusion of a factor accounting 
for finite extensibility in the polymer molecule. The parameters in these models 
were determined by comparison with the shearing data and the results used to 
predict the elongational viscosities observed in the fiber spinning experi- 
ments. 

From a qualitative point of view, all five constitutive equations predicted major 
experimental trends correctly. However, only the generalized Maxwell model, 
which required the determination of five unknown constants, provided a semi- 
quantitative description of both the shearing and extensional flows. In the re- 
mainder of this section, the analysis of Spearot and Metzner is repeated, using 
the present continuum-modified multibead/spring model. 

The model predictions for 9 and N1, eqs. (22) and (23), were fitted to the ex- 
perimental viscosity and normal stress data for two of the polyethylene melts 
(designated by Spearot as PE-1 and PE-2) in the previous section. The exper- 
imental data and model predictions are plotted in Figures 10 and 11, and the 
model parameters are tabulated in Table 11. Measurements of M, and M, for 
these melts were also reported by Spearot. These data and other physical 
properties are tabulated in Table I. 

The fiber spinning apparatus used by Spearot and Metzner was operated 
isothermally. Polymer samples were extruded through a single orifice ( D  = 0.1 
in., L/D = l . l) ,  and the resulting filaments were collected under tension on a 
take-up reel. The tension T ( x )  in the filament was measured and corrected for 
a small amount of sag in the horizontal spin line. The extension rates were de- 
termined from the measured mass flow rates and the diameter attenuation rates, 
which were obtained from photographs of the spinline. The extension rate r 
was found to be constant along the spinline, and the extensional viscosity was 
calculated from 

where D ( x )  is the filament diameter a t  position x .  

field was calculated from the relation 
The amount of time the fluid element a t  position x = L had existed in the flow 

Thus, combining the calculations of ?(x)  and t ( x ) ,  the extensional viscosity was 
determined as a function of time for each extension rate. The results are plotted 
in Figures 10 and 11. 

The theoretical prediction of the stress in the spinline requires the solution 
of the constitutive equation for the case of extensional flow at  constant r for a 
fluid initially exhibiting stress levels S& and Sg,. Under these conditions, the 
present model yields the following expression for the time dependent extensional 
viscosity: 
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where c1 = (1 - ~ ) 2 ~ 8 , r  and x = M/M,. 
In Spearot's analysis, the initial stress S$ was taken as zero, since S2o2 is smaller 

than STl and is multiplied by an exponential that decays in time. Also, Spearot 
retained only the longest relaxation time in the term multiplied by Syl in each 
of the constitutive equations considered. This assumption allowed the stress 
S!, to be equated to the initial (i.e., x = 0 or t = 0) tensile stress measured. These 
simplifications are also utilized in the present analysis, and eq. (36) thus reduces 
to 

where c1 = (1 - t)2"8,r and x = M/M,. 
Eguation (37) has been evaluated using the parameter values determined from 

the shearing data (Table 11) and the experimentally measured values of SYl (also 
tabulated in Table I1 in the form G(0) = SY1/I'). The predictions are represented 
by the solid lines in Figures 10 and 11. 

The results are very encouraging. The model predictions describe quite well 
the higher extension rate data for both polyethylenes. For the lower extension 
rates, the model predictions clearly underestimate 17 at large values of t .  How- 
ever, it should be emphasized that this degree of discrepancy is well within the 
experimental scatter in the shear data from which the model parameters were 
determined. 

In summary, the present model appears to satisfactorily describe the ex- 
tensional flow field of an isothermal melt spinning experiment, using model 
parameters determined from steady shearing flow. Furthermore, the present 
theory offers a significant improvement in predictive capability, with fewer ad- 
justable parameters than the constitutive equations evaluated by Spearot and 
Metzner. 

INFLUENCE OF TEMPERATURE 

It is highly desirable that a constitutive equation have the inherent ability to 
predict the influence of temperature on rheological behavior. Previous studies 
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Fig. 12. Plot of q (solid points) and N1 (open points) vs. shear rate a t  three temperatures: (A) 
160OC; (0) 180°C; (0) 200°C. Data of Chen and B o g ~ e . ~ ~  

have indicated that the primary effect of temperature is on the polymer relaxa- 
tion time, while the relative shapes of the viscosity or normal stress curves remain 
unchanged. The dependence of 8, on T is given by eq. (14); and if we assume 
t and a are independent of temperature, this expression suffices to determine 
completely the rheological changes. 

. From eqs. (14) and (221, one may readily demonstrate that curves of v/v0 versus 
G at  different temperatures should superimpose if G is multiplied by a “shift 
factor” a T ,  defined by 

where TR, p ~ ,  and  OR are the reference temperature, density, and viscosity, re- 
spectively. Similarly, plots of NlpRTRIpT versus UTG should also superimpose. 
Ferry has previously presented both of these reduced variable correlations and 
noted their success in correlating a variety of data.4 M e n d e l ~ o n ~ ~  has also 
demonstrated the success of the viscosity correlation for a wide variety of poly- 
mers, with UT calculated from the “approximate form,” 

An additional example of this approach is illustrated in Figures 12 and 13. In 
Figure 12, the viscosity and primary normal stress data of Chen and BogueZ9 is 
plotted for three temperatures. The data for 160” and 200°C were then shifted 
as discussed above. The resulting single curves in Figure 13 clearly illustrate 
the success of the procedure. 

Under the assumed constancy of a and t, the influence of temperature on any 
other rheological function may readily be determined. 
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SUMMARY 

An explicit rheological constitutive equation for polymer melts is presented. 
The model contains four parameters: 70, a,  E ,  and 8, or KE; it is quite similar 
in form to the four-constant Spriggs model. In simple shearing or small-am- 
plitude oscillatory shearing, the model predictions yield realistic predictions of 
rheological response, and the model is shown to quantitatively fit a variety of 
experimental data. The extensional viscosity measurements of Spearot and 
Metzner are also well described, using parameters obtained from steady shearing. 
The form of the model yields well-known temperature superposition relations 
for viscosity and the first normal stress difference and may be used to readily 
predict the temperature dependence of other rheological functions. 

The authors are grateful to the National Science Foundation for partial support under Grant GK 
31590. 
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